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Part 1

Motivation for Generative Models
From Adversarial Training to GANs
GAN’s Architecture

GAN’s objective

DCGANs



GANSs

* Generative
* Learn a generative model

e Adversarial
* Trained in an adversarial setting

* Networks
e Use Deep Neural Networks



Why Generative Models?

 We’ve only seen discriminative models so far

e Given an image X, predict a label Y
e Estimates P(Y|X)

* Discriminative models have several key limitations
e Can’t model P(X), i.e. the probability of seeing a certain image
* Thus, can’t sample from P(X), i.e. can’t generate new images

* Generative models (in general) cope with all of above
e Can model P(X)
* Can generate new images



Magic of GANSs...

Ground Truth Adversarial

Lotter, William, Gabriel Kreiman, and David Cox. "Unsupervised learning of visual structure using predictive generative networks." arXiv preprint arXiv:1511.06380 (2015).



Magic of GANSs...

Which one is Computer generated?

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arXiv preprint arXiv:1609.04802 (2016).



Magic of GANSs...

User edits Generated images

http://people.eecs.berkeley.edu/~junyanz/projects/gvm/




Adversarial Training

* In the last lecture, we saw:
* We can generate adversarial samples to fool a discriminative model
* We can use those adversarial samples to make models robust
* We then require more effort to generate adversarial samples
* Repeat this and we get better discriminative model

* GANs extend that idea to generative models:
e Generator: generate fake samples, tries to fool the Discriminator
* Discriminator: tries to distinguish between real and fake samples

* Train them against each other
* Repeat this and we get better Generator and Discriminator



GAN’s Architecture

Differentiable module
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e Zissome random noise (Gaussian/Uniform).
e Zcan be thought as the latent representation of the image.

Latent random variable
OO

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Latent random variable

Training Discriminator
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https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Latent random variable

Training Generator
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Generatorin action
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GAN’s formulation

min max V (D, G)
G D

* It is formulated as a minimax game, where:
* The Discriminatoris trying to maximize its reward V(D, G)
 The Generator is trying to minimize Discriminator’s reward (or maximize its loss)

V(D,G) = Eypixy[log D(x)] +|E,- g [log(1 — D(G(2)))]

* The Nash equilibrium of this particular game is achieved at:



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do

for £ steps do
e Sample minibatch of m noise samples {z(1), ..., z2(™)} from noise prior p,(2).
e Sample minibatch of m examples {x(!),..., (™} from data generating distribution

Discriminator

pdata( )
updates e Update the discriminator by ascending its stochastic gradient:

Vo, L3 [log D () + 108 (1~ D (6 (=)

1=

end for
e Sample minibatch of m noise samples {z'"/, ..., 2™ } from noise prior p,
Generator e Update the generator by descending its stochastic gradient:

updates

Vo, otos (10 (6(9)).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Vanishing gradient strikes back again...

mm max V(D,G)

V(D G) — x~p(x) [10gD(X)] + IIEzqu(z) [lOg(l D(G(Z)))]

Vo V(D,G) = Vg Ezgz [log(l B D(G(Z)))]

_Va — 1_
+ alog(1 - (@) = 70 = QIO = —o(@) = ~D(6()

* Gradientgoes to 0 if D is confident,i.e. D(G(Z)) -0

* Minimize IEZNQ(Z)[logD(G(Z))] for Generator instead (keep Discriminator as it is)



Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.



CIFAR

Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.



DCGAN: Bedroom images

AR

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).



Deep Convolutional GANs (DCGANSs)

Key ideas:

* Replace FC hidden layers with

Generator Architecture Convolutions

* Generator: Fractional-Strided
convolutions

 Use Batch Normalization after
each layer

* |Inside Generator

* Use RelU for hidden layers
* Use Tanh for the output layer

Stride 2 16

Project and reshape

CONV 1
CONV 2

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).



Latent vectors capture interesting patterns...

man man woman
with glasses without glasses without glasses

woman with glasses

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).



Part 2

Advantages of GANs

Training Challenges
* Non-Convergence
* Mode-Collapse

Proposed Solutions

e Supervision with Labels
 Mini-Batch GANs

Modification of GAN’s losses
* Discriminator (EB-GAN)
 Generator (InfoGAN)



Advantages of GANs

* Plenty of existing work on Deep Generative Models
* Boltzmann Machine
* Deep Belief Nets
 Variational AutoEncoders(VAE)

* Why GANs?
e Sampling (or generation) is straightforward.
* Training doesn't involve Maximum Likelihood estimation.
* Robust to Overfitting since Generator never sees the training data.
* Empirically, GANs are good at capturing the modes of the distribution.

Goodfellow, lan. "NIPS 2016 Tutorial: Generative Adversarial Networks." arXiv preprint arXiv:1701.00160 (2016).



Problems with GANSs

* Probability Distribution is Implicit
* Not straightforward to compute P(X).
* Thus Vanilla GANs are only good for Sampling/Generation.

* Training is Hard
* Non-Convergence
* Mode-Collapse

Goodfellow, lan. "NIPS 2016 Tutorial: Generative Adversarial Networks." arXiv preprint arXiv:1701.00160 (2016).



Training Problems

* Non-Convergence
* Mode-Collapse



* Deep Learning models (in general) involve a single player
* The player tries to maximizeits reward (minimizeits loss).
e Use SGD (with Backpropagation) to find the optimal parameters.
* SGD hasconvergence guarantees (under certain conditions).
* Problem: With non-convexity, we might converge to local optima.

min L(G)

* GANs instead involve two (or more) players
e Discriminatoristrying to maximizeits reward.
* Generatoris trying to minimize Discriminator’sreward.

minmaxV (D, G)
G D

* SGD was not designed to find the Nash equilibrium of a game.
* Problem: We might not converge to the Nash equilibrium at all.

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.



Non-Convergence
mxin max Vix,y)

Let V(x,y) =xy

e State 1: x>0 y>0 V>0 Increasey Decrease x
e State 2: x<0 y>0 V<O Decreasey | Decrease x
e State 3: x<0 y<O0 V>0 Decreasey | Increase x
e State4 : |x>0 y<O0 V<O Increasey Increase x
e State5: [x>0 |y>0 V>0 == State 1 Increasey | Decrease x




Non-Convergence

min max xy
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Goodfellow, lan. "NIPS 2016 Tutorial: Generative Adversarial Networks." arXiv preprint arXiv:1701.00160 (2016).



Problems with GANSs

* Non-Convergence
* Mode-Collapse



Mode-Collapse

* Generator fails to output diverse samples

Target . .
Expected - 4 |I " O NEEEE mEmE
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k
- .
Output . - - -

Metz, Luke, et al. "Unrolled Generative Adversarial Networks." arXiv preprint arXiv:1611.02163 (2016).



Some real examples

Reed, S., et al. Generating interpretable images with controllable structure. Technical report, 2016. 2, 2016.



Some Solutions

* Mini-Batch GANs
* Supervision with labels

* Some recent attempts :-

e Unrolled GANs
* \WW-GANSs




Basic (Heuristic) Solutions

* Mini-Batch GANs
e Supervision with labels



How to reward sample diversity?

* At Mode Collapse,

e Generator produces good samples, but a very few of them.
* Thus, Discriminator can’t tag them as fake.

* To address this problem,
* Let the Discriminator know about this edge-case.

* More formally,
* Let the Discriminator look at the entire batch instead of single examples
* If there is lack of diversity, it will mark the examples as fake

* Thus,
* Generator will be forced to produce diverse samples.

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.



Mini-Batch GANs

* Extract features that capture diversity in the mini-batch
* Fore.g. L2 norm of the difference between all pairs from the batch

* Feed those features to the discriminator along with the image

* Feature values will differ b/w diverse and non-diverse batches
* Thus, Discriminator will rely on those features for classification

* This in turn,
 Will force the Generator to match those feature values with the real data
* Will generate diverse batches

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.



Basic (Heuristic) Solutions

* Mini-Batch GANs
* Supervision with labels



Supervision with Labels

 Label information of the real data might help

Car

Dog
I
|
Real I
I

D ﬁ D Human
Fak
aKe Fake

* Empirically generates much better samples

Salimans, Tim, et al. "Improved techniques for training gans." Advances in Neural Information Processing Systems. 2016.



Alternate view of GANs
mGin max V(D,G)
V(D, G) = [EXNP(x) [logD(x)] + IIE:vaq(z) [log(l o D(G (Z)))]

‘ D* = argmlgixV(D, G) ‘ G" = argmGinV(D, G)

* |In this formulation, Discriminator’s strategy was D(x) — 1, D(G(Z)) -0

* Alternatively, we can flip the binary classification labelsi.e. Fake =1, Real =0

V(D,6) = Eyx pex|log(l —D())| + Ez~q(z[log(D(G(2)))]

* In this new formulation, Discriminator’s strategy will be D(x) — 0, D(G(z)) -1

Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv preprint arXiv:1609.03126 (2016)



Alternate view of GANs (Contd.)
e If all we want to encodeis D(x) — 0, D(G(Z)) -1

D* = argmaxp Ex-p(x) [log(l — D(x))] + Ez-q(2) [log(D (G (Z)))]

We can use this D* = argming IEx~p(x) log(D (x)) + IE:z~q(z) [log (1 _ D(G(Z)))] ‘

* Now, we can replace cross-entropy with any loss function (Hinge Loss)

D* = argminp Ey_px)D(x) + E;. 4, max (O,m — D(G(Z)))

* And thus, instead of outputting probabilities, Discriminator just has to output :-

* High valuesforfake samples
* Low valuesforreal samples

Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv preprint arXiv:1609.03126 (2016)



Energy-Based GANSs

 Modified game plans
* Generator will try to generate samples with

low values D(x) = ||Dec(Enc(x)) — x||usk
e Discriminator will try to assign high scores to
fake values
* Use AutoEncoderinside the Discriminator @__,_* *
. R
* Use Mean-Squared Reconstruction error as D(x) @
* High Reconstruction Error for Fake samples e

* Low Reconstruction Error for Real samples

Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv preprint arXiv:1609.03126 (2016)



More Bedroomes...

Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based generative adversarial network." arXiv preprint arXiv:1609.03126 (2016)



Celebs...




The Cool Stuff...

3D Faces
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Cool Stuff (contd.)

3D Chairs
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(b) Width

(a) Rotation



How to reward Disentanglement?

* Disentanglement means individual dimensions
independently capturing key attributes of the image

* Let’s partition the noise vector into 2 parts :-
 z vector will capture slight variations in the image

¢ vector will capture the main attributes of the image
* For e.g. Digit, Angle and Thickness of images in MNIST

* If c vector captures the key variations in the image, Z (roise
Will c and x4, be highly correlated or weakly correlated?

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, |., & Abbeel, P. INfoGAN: Interpretable Representation Learning by Information Maximization Generative Adversarial Nets



Recap: Mutual Information

* Mutual Information captures the mutual dependence between two variables

 Mutual information between two variables X,Y is defined as:

p(x,y) )
p(x)p(y)

I(X;Y) = Zp(x,y) log(
X,y

I(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)



InfoGAN

e We want to maximize the mutual information I rea
between cand x = G(z, ¢)

* Incorporate in the value function of the minimax
game.

w I
Q
=
® || =~

Xreal (data) X fake

ot

minmax V;(D,6) = V(D,6) |- A1(c; 6(z,0)))

[C (Iatent)) ( 7 (noise)]

Chen, X., Duan, Y., Houthooft, R.,Schulman, J., Sutskever, |., & Abbeel, P. INfoGAN: Interpretable Representation Learning by Information Maximization Generative
Adversarial Nets, NIPS (2016).



InfoGAN

Mutual Information’s Variational Lower bound

I(c; G(z,¢)) = H(c) — H(c|G(z,¢))

= Ex~6z,0) | Ee'~ pep[l0g P (c'[0)]| + H(e)

= Ex ~ ¢z, _DKL(PHQ)"‘ IE ’~P(c|x)[logQ(C'|x)]] + H(c)
> Ex ~ 6(2,0) | Ee'~ picollog Q(c' [0)]] + H(c)

-
>[e
(‘b S~

[Xreal (data)) ( X fake J

)

> Ec~P(C), x~G(z,c)[lOg Q(ClX)] + H(C) (C(lt t)) (Z( i )]

Chen, X., Duan, Y., Houthooft, R.,Schulman, J., Sutskever, |., & Abbeel, P. INfoGAN: Interpretable Representation Learning by Information Maximization Generative
Adversarial Nets, NIPS (2016).



Part 3

Conditional GANs

Applications

* Image-to-Image Translation
 Text-to-Image Synthesis

* Face Aging

Advanced GAN Extensions

 Coupled GAN

e LAPGAN - Laplacian Pyramid of Adversarial Networks
 Adversarially Learned Inference

Summary



Conditional GANs

MNIST digits generated conditioned on their class label.
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Conditional GANs

* Simple modification to the original GAN
framework that conditions the model on

additional information for better multi-modal
learning.

[Xreal (data)J [ Xfake )

: . G
* Lends to many practical applications of GANs
when we have explicit supervision available.

(C (class)] [Z (noise))

Conditional GAN
(Mirza & Osindero, 2014)

Image Credit: Figure 2 in Odena, A., Olah, C. and Shlens, J., 2016. Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585.

Mirza, Mehdi, and Simon Osindero. “Conditional generative adversarial nets”. arXiv preprint arXiv:1411.1784 (2014).



Part 3

* Applications
* Image-to-Image Translation

 Text-to-Image Synthesis
* Face Aging



Image-to-Image Translation

Labels to Street Scene Labels to Facade BW to Color

input output
P Aerial to Map P
-,_‘ v‘ \l’d
5 output
Edges to Photo
npt T output input output

Figure 1 in the original paper.
Link to an interactive demo of this paper

Isola, P, Zhu, J.Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).



Image-to-Image Translation

Positive examples Negative examples

e Architecture: DCGAN-based
architecture

Real or fake pair? Real or fake pair?

* Training is conditioned on the images
from the source domain.

G tries to synthesize fake

* Conditional GANs provide an effective  magesthatfool D
way to handle many complex domains  Driesto identiy the fakes
without worrying about designing Figure 2 in the original paper.
structured loss functions explicitly.

Isola, P, Zhu, J.Y., Zhou, T., & Efros, A. A. “Image-to-image translation with conditional adversarial networks”. arXiv preprint arXiv:1611.07004. (2016).



Text-to-Image Synthesis

this small bird has a pink this magnificent fellow is
. : breast and crown, and black almost all black with a red
M Ot|Vat|O n primaries and secondaries. crest, and white cheek patch.

Given a text description, generate
images closely associated.

the flower has petals that this white and yellow flower

1+1 1 bright pinkish 1 h hi hi Is and
Uses a conditional GAN with the L P i purple v i it s
generator and discriminator being | | ‘
condition on “dense” text
embedding.

Figure 1 in the original paper.

Reed,S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. “Generative adversarial text to image synthesis”. ICML (2016).



Text-to-Image Synthesis

This flower has small, round violet This flower has small, round violet
petals with a dark purple center Xr = petals with a dark purple center
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SrF----E LY
[ .

.......

______

Discriminator Network

Figure 2 in the original paper.

Generator Network

Positive Example: Negative Examples:
Real Image, Right Text Real Image, Wrong Text
Fake Image, Right Text

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. “Generative adversarial text to image synthesis”. ICML (2016).



Face Aging with Conditional GANs

» Differentiating Feature: Uses an Identity Preservation Optimization using an
auxiliary network to get a better approximation of the latent code (z*) for an

input image.

* Latent code isthen conditioned on a discrete (one-hot) embedding of age

categories.

Latent Vector Approximation

put face x
of age yq Zp
Encoder
E

Yo

Identity
Preserving
Optimization

Initial reconstruction
X of age yo

Generator
G

z"

Generator
G

\

Optimized reconstruction
x of age y,

/

Face Aging

(.

z

\-

||60+u

\

Resulting face X¢q,ge¢
of age “60+”

Generator s

G

J

Figure 1 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.



Face Aging with Conditional GANs

Reconstruction
. Optimization Face Aging
Original Initial \ \
Reconstruction ( \
Pixelwise 19-29 30-39 40-49 50-59 60+

Figure 3 in the original paper.

Antipov, G., Baccouche, M., & Dugelay, J. L. (2017). “Face Aging With Conditional Generative Adversarial Networks”. arXiv preprint arXiv:1702.01983.



Conditional GANs

Conditional Model Collapse

* Scenario observed when the
Conditional GAN starts ignoring
either the code (c) or the noise
variables (z).

e This limits the diversity of
images generated.

Amanina oran e ]acket with sunglasses and a hat ski down a hill.

==

Credit?

Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).



Part 3

e Advanced GAN Extensions
 Coupled GAN

e LAPGAN - Laplacian Pyramid of Adversarial Networks
 Adversarially Learned Inference



Coupled GAN

* Learning a joint distribution of multi-domain images.

e Using GANs to learn the joint distribution with samples drawn from
the marginal distributions.

 Direct applications in domain adaptation and image translation.



Coupled GANs

e Architecture

Generators Discriminators
GAN, 9:(2) f1(912)
> 1 > > —eo—>» —o—» —o—»( )
z —— | weight sharing
- f2(922))

GAN,

Figure 1 of the original paper.

Weight-sharing constraints the network to learn a joint distribution without corresponding supervision.

Liu, Ming-Yu, and Oncel Tuzel. “Coupled generative adversarial networks”. NIPS (2016).



Coupled GANs - Hair

* Some examples of
generating facial
Images across _ Facial
different feature Expression
domains.

* Correspondingimages
in a column are
generate from the
same latent code z

— Sunglasses

Figure 4 in the original paper.

Liu, Ming-Yu, and Oncel Tuzel. “Coupled generative adversarial networks”. NIPS (2016).



Laplacian Pyramid of Adversarial Networks

Figure 1 in the original paper. (Edited for simplicity)

 Basedon the Laplacian Pyramid representation of images. (1983)
* Generatehighresolution(dimension)images by using a hierarchical system of GANs
e |terativelyincreaseimage resolution and quality.

Denton, E.L., Chintala, S.and Fergus, R., 2015. “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks”. NIPS (2015)



Laplacian Pyramid of Adversarial Networks

Figure 1 in the original paper.

Image Generation using a LAPGAN

e Generator G; generatesthe baseimage I3 fromrandom noise input zs.

* Generators(G,, (1, Gy) iteratively generate the difference image (ﬁ) conditioned on previous
smallimage ([).

* Thisdifferenceimage is added to an up-scaled version of previous smallerimage.

Denton, E.L., Chintala, S.and Fergus, R., 2015. “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks”. NIPS (2015)



Laplacian Pyramid of Adversarial Networks

Real/

Generated?

Real/

Generated?

Real/Generared?

Figure 2 in the original paper.

Real/Generated?

Training Procedure:
Models ateach level are trained independently to learn the required representation.

Denton, E.L., Chintala, S.and Fergus, R., 2015. “Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks”. NIPS (2015)



Adversarially Learned Inference

* Basic idea is to learn an encoder/inference network along with the
generator network.

* Consider the following joint distributions over x (image) and z (latent
variables) :

CI(X,Z) — CI(X) CI(Z|X) encoder distribution

P(X, Z) — p(Z) p(le) generator distribution

Dumoulin, Vincent, et al. “Adversarially learned inference”. arXiv preprint arXiv:1606.00704 (2016).



Encoder/Inference Network

min m

G

Adversarially Learned Inference

x ~ q(x)

-

J

D

z ~p(z)
Z, 2 i’, z Q
(@.2) { Dion) } (& 2) o
L)
Discriminator Network ~ \
T~ p(z|z)

Generator Network

Figure 1 in the original paper.

ax g [log(D(x, G, (x))] + By [log(l — D (G, (Z)»Z))]

Dumoulin, Vincent, et al. “Adversarially learned inference”. arXiv preprint arXiv:1606.00704 (2016).



Adversarially Learned Inference

* Nash equilibrium yields

* Joint: p(x,z) ~q(x,z)

* Marginals: p(x) ~q(x)and p(z)~ q(z)
* Conditionals: p(x|z) ~q(x|z) and p(z|x) ~ q(z|x)

* Inferred latent representation successfully reconstructed the original
Image.

e Representation was useful in the downstream semi-supervised task.

Dumoulin, Vincent, et al. “Adversarially learned inference”. arXiv preprint arXiv:1606.00704 (2016).



Summary

* GANs are generative models that are implemented using two
stochastic neural network modules: Generator and Discriminator.

* Generator tries to generate samples from random noise as input

* Discriminator tries to distinguish the samples from Generator and
samples from the real data distribution.

* Both networks are trained adversarially (in tandem) to fool the other
component. In this process, both models become better at their
respective tasks.



Why use GANs for Generation?

* Can be trained using back-propagation for Neural Network based
Generator/Discriminator functions.

e Sharper images can be generated.

 Faster to sample from the model distribution: single forward pass
generates a single sample.
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